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1. INTRODUCTION 

Tree-based statistical models are a recent development 
in statistics which have been applied to diagnostic and 
prediction problems in widely diverse fields of endeavor, but 
are as yet not well known in the atmospheric sciences. These 
are an alternative to linear and additive models for regression 
problems and to linear logistic and additive logistic models 
for classification problems. Much of the pioneering work in 
tree-based statistical model development was done by 
Breiman et al (1984) in their development of CART. which 
stands for Classification and Regnssion Trees. CART is a 
--based non-parametric statistical procedure for application 
to classification and regression problems. Its authors find that 
error rates of CART solutions are nearly always as low or 
lower than solutions by parametric procedures such as linear 
regression, logistic regression, and discriminant analysis, and 
are significantly lower for problems involving complex 
predictands and many pndictors. The software for running 
me-based models can be obtained from its developers. and 
more recently, has k n  included in the "S-Plus" statistical 
software package (Chambers and Hastie, 1992). 

From a data base of predictand cases and accompanying 
predictors CART will establish decision trees that either 
classify a categorical predictand or are a regression fit of the 
predictand. A decision tree consists of a tree-like structure of 
binary decision rules. At each decision point (node) a case 
will branch either to the left or to the right based on a test 
against a threshold predictor value, and will continue 
branching in subsequent nodes until a final point (terminal 
node) is reached. CART uses a cost-complexity measure 
based on error rate and tree complexity to determine how 
many nodes it will allow. It uses this measure to search for 
the optimal tree, i.e. the tree which would give the least error 
when used with independent data. The error is calculated with 
a test data set held in reserve for data sets larger than about 
1000 cases. or by cross-validation for smaller data sets. Both 
categorical and continuous predictors an allowed. and linear 
combinations of predictors can be tried. Several options for 
determining node splitting rules are allowed. Predictors are 
ranked in an ad-hoc manner according to their importance in 
establishing the trees. The decision trees found in the work 
reported here have proved to be appealing to users because 
they are easy to understand and work with. and the decision 
rules are nearly always found to make physical sense. 

Use of CART in a classiiication application was reported 
in Burrows (1991). In that paper a tree-based statistical model 
was developed for mesoscale prediction of snowfall from 

lake-effect snowsqualls. The model has been implemented at 
the Ontario Weather Center. The forecasts have been found 
by the operational forecasters to be accurate and useful, and 
the guidance is now used routinely in the office. 

The application of CART reported in this paper is the 
development of a tree-based statistical regression model for 
prediction of ice-cover on the Great Lakes. Observed 
spatially-averaged ice-cover for the winter months 
December-April of 1965-1979 for six large basins defined in 
Auel (1990) for Lakes Superior and Erie were used as the 
learning data to develop tree-based regression prediction 
models for each basin. Eight potential predictors relevant to 
this problem were used. Three me-based icecover statistical 
prediction models were developed for each basin and used 
with some simple selection rules to produce a final model for 
daily ice-cover prediction in each basin for early November 
to late May. ?he models have approximately I n  to 2t3 the 
RMS enur of Assel's (1990) freezing-degreeday (FDD) 
model in fitting the observed data. When applied to 
independent data they are expected to be capable of 
predicting percentage icecover for Lake Superior with about 
10-208 error and for Lake Erie with about 15-20% error. The 
new models should be suitable for prediction of daily to 
weekly spatially-averaged ice-cover in numerical weather and 
climate prediction models and for diagnosis of expected daily 
ice-cover in Lakes Erie and Superior by operational agencies. 
Work to produce models for the basins in the other Great 
Lakes is planned. A description of the models is given in 
Section 2. Discussion is limited since much of the work was 
completed just prior to the deadline for this article. 

2. TREE-BASED REGRESSION PROBLEM 

The goal was to produce a =-based statistical model 
for daily prediction of spatially-averaged ice-cover for large 
basins on the Great Lakes for November to May to be used in 
numerical weather and climate prediction models, and to 
provide a means for diagnosis of expected daily to weekly 
ice-cover by operational agencies. Potential predictors were 
designed from three considerations: characteristics of winter 
aimasses and wind conditions affecting a basin, the solar 
radiation cycle, and the FDD model's daily predictions. The 
predictand was observed spatially-averaged ice-cover for the 
winter months December-April of 1%5-1979 for each of the 
six basins defined in Figure 1 for Lakes Superior and Erie. 
.Work to produce models for the other Gnat  Lakes is planned. 



For two msons the task of bullding a mthical 
prediction model for ice-cover proved more complex than 
merely fitting the observed data and using the fit to make 
daily predictions. The first reason results from the availability 
of observed ice-cover sporadically rather than every day. 
Obsewations for most basins are rather infrquent from late 
Decanber until mid-late Feb- and more frequent hwn 
then to early-mid April, but even then consecutive daily 
observations an rare. Even though CART fits the observed 
data very well, there can be large day-today fluctuation of 
the ice-cover predictions for some periods in between the 
days on which observations an available due to model 
sensitivity to certain predictors, such as wind speed. At times 
for some basins large fluctuations actually occur as wind 
advects the ice, and this is reflected in the observations. 
Decisions must be made about the extent of day-to-day 
variability to accept in a prediction modeL Another 
consequence of using a fit of the observed data alone is that 
large enors in the predictions of ice can occur for the mostly 
ice-free periods Novembr-December and late April-May for 
most basins, times for which no observed data is available. 
Thus the FDD model, which makes a daily prediction for 
November 1 to May 31, is needed here. The second reason 
for complication is due to a peculiarity of uee-based 
statistical regression models, and is called here the "flip-flop 
problem". It occurs when predictor values are close to the 
threshold values in the decision uees. The resulting answer 
can vary wildly from day-to-day because the decision is "flip- 
flopping" from the left branch to the right branch of the tree. 
This problem is the most truublesome during periods of rapid 
changes in ice-cover, but can occasionally occur at any time. 
The solution to the above all was to produce daily predictions 
by three methods and use some simple selection rules to 
produce a final result. 

Three sets of tne-based statistical mod& were produced 
for each basin: two regression models which fit the observed 
pcnxnt ice-cover data and a sixcategory classification model 
which fit the original daily FDD model prediction data 
R#lictors an explained in Section 3.1. Observed and FDD 
model data are available as percent icecover. ranging from 0- 
100%. The original FDD model percent ice-cover prediction 
data was available every day from November 1 1965 to May 
31 1983. excluding the summer period. This was converted to 
six categories: 0%, >0-20%. >20-4046, >40-60%. >60-80%. 
and >80-100%. One of the tree-based models which fit 
observed data included the original FDD model ice-cover 
prediction as a categorical predictor, and one did not. The 
original FDD model data was fit by CART with atmospheric 
and solar radiation predictors. The two observed-data CART 
models and the CART FDD model were run daily from 
November 1 1965 to May 31 1983. The CART FDD model 
was used to generate a daily FDD categorical ice-cover 
prediction as an input predictor to the observeddata model 
which included the original FDD data as a predictor. This 
procedure eliminates explicit dependence on the FDD model 
and thus the need to directly predict surface temperanut and 
to know in advance when the date of maximum freezing 
degree days would be reached in a winter. The three sets of 
daily ice-cover predictions were scanned for each basin in 
order to formulate simple selection rules that yield a single 
prediction for each basin for each day fmm November 1 to 
May 31. 

Sixteen predictors were originally tried. Several runs 
were made trying various combiitions of predictors, with 
the eight predictors shown in Table 1 found to give the best 
overall results. Linear combinations of predictors were not 

fwnd to improve tbe nsults. Aanosphtxic predictors were 
calculated with the U.S. National Meteorological Center 
(NMC) 47x51 381 km grid-point analysis data for 0000 UTC 
and 1200 UTC obtained from the National Center for 
Atmospheric Rmearch (NCAR). A 1 W m b  geostrophic 
wind d W o n  was determined at each analysis time in the 
center of each basin in order to calculate atmospheric 
predicton at the ncanst onshore ba.sii boundary location 
up* fmm the basin center. Boundary points were 
distributed approximately every 50-km m u n d  each basin An 
850-mb temperatun predictor was used in place of surface 
temperature predictor due to occasional bad surface 
temperanut data in the NCAR data base, particularly in the 
years 1977-1979, and because surface temperaturr can be 
notoriously variable in weather and climate model 
predictions. The seasonal solar radiation cycle was 
paramemized with a simple sine function. 

2.2 RESULTS 

CART initially produces a tree which fits all the data 
perfectly then finds a series of increasingly less complex trees 
by systematically reducing the number of decision nodes 
(known as pming) until only one node remains. The error of 
each aee when applied to independent data is estimated for 
large data sets (more than about 1000 cases) by reserving a 
portion of the learning data for testing and building the trees 
with the remaining data, and for small data sets by estimating 
the enor with by cross-validation CART decision trees were 
produced for the scenarios described in the introduction to 
Section 3. Regression trees which fit the observed data 
("OBS:FDPINW and "0BS:FDD-OUT models) were 
constructed with the least absolute deviation (LAD)" of ice- 
cover values of cases within a node. while e m r s  in applying 
rhac tries to indcpdcnt  data were estimated by "10-fold 
cross-validation". Classification ~ e e s  which fit the FDD 
model data ("CART-FDD") were constructed with the 
"ordered-twoing" option, while e m r s  when applying thest 
trees to independent data were estimated by reserving l/3 of 
the original data sample as a test sample. The final 
selected for use were those found to have the minimum 
estimated e m r  or close to it in a few cases where that m e  
had very few nodes. 

An e m r  summary for the decision trees is given in 
Table 2. Errors for the observed-data-fit decision aees are 
expressed as percent ice-cover, and errors for the FDD 
model-data-fit decision uees are expressed as the fraction of 
misclassified data. We see that using the FDD model data as 
a predictor lowers the fit-emr of the trees for all but the Erie- 
East basin. When using the observed-data-fit uees with 
independent data, the enor of the ice-cover percentage 
prediction for the Lake Superior basins is estimated to be 
about 10-2046, and about 15-20% for the Lake Erie basins. 
This is a respectable d t  considering the e m r  in the ice- 
cover observations themselves is about 10%. 

Table 3 shows the importance ranking of predictors. The 
airmass indicator predictors AVTHK. CUMTHK, and 
AVTEM850, along with FDDMODEL are the overall most 
important for all basins. The solar radiation predictor 
SINEDATE was next in overall importance, and was 
relatively more important for Lake Erie than L& Superior. 
The least important pndictors were QAD700, which is 
related to cloud cover, and tht daily wind speed predictor 
DAYSPEED. 

The next step was to make a model for daily ice-cover 
predictions. The CART-FDD. OBS:FDDIN, and 0BS:FDD- 
OUT models were re-run for each basin each day from 



November 01 1965 May 31 1983. The pndicdon by CART- 
FDD provided the categorical icecover FDD input predictor 
for the 0BS:FDD-IN prediction, thus ellminaflng explicit 
dependence on the FDD model. The daily predictions by a l l  
three were scanned for some simple selection rules to provide 
a final daily prediction model, (CART-SR model). These 
arbitrary rules are formulated with the basic philosophy of 
staying close to the FDDMODEL prediction for the 
November to mid December and late April to end of May 
periods; using the 0BS:FDD-OUT prediction for the early 
winter freeze-up and spring meltdown periods of rapid ice- 
cover change, when the FDD model is likely to have large 
error, using the OBSFDD-IN prediction for the winter 
period; and checking that the rules did not increase overall 
error of the fit of the observed data. The flip-flop problem 
must also be dealt with in the rules. Table 4 shows the 
predictions for the Erie-Center and adjacent Erie-East basins 
for January 11 - February 2, 1976, a period of rapidly 
increasing icecover. Several points are illustrated here. The 
observations of spatially averaged ice-cover are not 
continuously available in time. The CART tree-based 
regression icetover prediction values are generally much 
closer to the observed ice-cover values than are the original 
FDD model values. The tree-based values jump non- 
continuously in time as the terminal decision nodes change 
because the value in each node is a least-absolute-deviation 
value of the ice-cover of all the cases in the node. This is not 
always cause for alarm - there is considerable fluctuation in 
the observations themselves, which the smoothly varying 
FDD model does not handle, but which is handled by the 
CART models. The CART-SR predictions for both basins 
change over from the 0BS:FDD-OUT model to the 
0BS:FDD-IN model in late January. The flip-flop problem 
struck the Erie-Center CART-FDD and 0BS:FDD-IN 
predictions January 22 and OBSmD-OUT predicrions 
January 28-31. The CART-SR model selection rules detected 
this and switched the CART-SR predictions to the opposite 
model in both occurrences. 

Table 5 shows errors for the fit of the observations by 
the different models and of the CART fit of the FDD model. 
Comparing the absolute value emrs in column 2 with the 
numbers in column 3 of Table 2 shows that using the CART- 
FDD prediction for 0BS:FDD-IN model does not 
substantially affect the accuracy of the prediction. The 
CART-SR model error is close to that of the 0BS:FDD-N 
and 0BS:FDD-OUT models. All of the CART tree-based 
models are seen to have substmrially less e m r  than the 
original FDD model. 

3. CONCLUDING REMARKS 

Two examples of using a tree-based statistical model 
(CART) to develop diagnostic and prediction models for 
atmospheric science problems were mentioned. The tree- 
based classification snowsquall prediction model is already in 
operational use at the Ontario Weather Center and has been 
found by the forecasters to be accurate and useful for 
mesoscale prediction of location and snow amounts from 
lake-effect snowsqualls. The tree-based regression models for 
prediction of spatially-averaged icecover have 1/3 to 2/3 of 
the error of Assel's freezing degree day model and an 
capable of predicting daily ice-cover to within 10-20% for the 
Lake Suverior basins and 15-204 for the Lake Erie basins. 
These mbdels proved particularly adept at handling ice-cwer 
in the Superior-Whitefish Bay and the three Lake Erie basins. 
where i&-cover can be hi&ly variable from day to day. 
Work is planned to develop models for basins on the other 
Great Lakes. 

Tree-based statistical models are a reladvely new 
development. Based on the success of CART for the two 
quite different applications mentioned here, the use of CART 
for other applications in the atmospheric and environmental 
sciences is encouraged. 
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Table 1:tential predictors used to establish regression 
decision trees for ice-cover on the basins shown in Figure 3. 

1. FDDMODEL - Assel (1990) freezingdegreeday model 
value of percent icecover in 6 categories: 0. >0-20. 
> 2 w .  #60. >6(r80. >8&100. 

2. AVTHK - average 700.mb to 1000-mb thickness in meters 
from November 1 to the c u m t  day. Slowly decreases 
from a maximum near November 1 to a minimum in 
late winter then slowly increases. 

3. C W K  - cumulated 700-mb to 1000-mb thickness 
minus 2800 meters from November 1 to the current 
day. 2800 meters thickness corresponds roughly to a 
surface temperature of 0 deg C. Same variation as 
AVTHK. 

4. AVZl00O - average 1000-mb height from November 1 to 
the current day. 

5. AVTEM850- average 850-mb temperature from 
November 1 to the current day. 

6. DAYSPEED - 1000-mb geosmphic wind speed in meters 
per second over the basin center for the current day. 

7. QAD7OO - 7 W m b  advection of absolute vorticity over the 
center of the basin for the current day. This should be 
related to middle-level cloud. 

8. SINEDATE - the sine of two pi times (the day number 
from November 1 minus 141). Has negative value 
before March 21 and positive value after. Varies fastest 
at spring equinox and slowest at winter solstice. For 
parametehation of solar radiation. 
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OBSFDDLN 182 22 6.8 % 14.0% 
OBSFDD-OUT 182 28 6.5 % 15.4% 
CART-FDD 3757 190 .004 .lo9 

OBSFDDIN 69 14 6.7 % 19.8% 
OBSFDD-OUT 69 17 6.7 % 20.4% 
CART-FDD 3757 204 .005 .086 

0BS:FDD-IN 48 21 1.6 % 15.8% 
OBSPDD-OUT 48 20 2.0 % 17.0% 
CART-FDD 3757 156 .011 .089 

R - 
0BS:FDD-IN 340 60 2.8 % 9.5% 
0BS:FDDOUT 340 9 7.7 % 10.5% 
CART-FDD 3757 209 .004 .084 

Table CART ranking of predictors based on the number of 
times each predictor is used in the total process for finding 
the best tree. Rankings are on a scale of 0-100. Shown are the 
predictor rankings for each of the basins. 

SUPERIOR 3 
CART - FDD CART - PDD CART FIT OF 
MODEL IN MODEL NOT IN PDDMODEL 
AVTHK 100 AVTHK 100 AVTEM850 100 
FDDMODEL 80 AVZlOOO 85 CUMTHK 80 
AVTEM850 75 AVTEM850 58 SINEDATE 58 
AVZlOOO 71 CUMTRK 57 AVTHK 3 8 
CUMTHK 54 SINEDATE 53 AVZlOOO 29 
SINEDATE 49 DAYSPEED 50 QAD700 West, east, and Whitefish Bay basins of Lake QAD700 40 QAD700 32 7 

Superior and west, center, and east basins of Lake Erie, from 
Assel (1990). DAYSPEED 18 

Table For each basin: column (1) number of observations 
available for growing CART decision trees: column (2) 
number of terminal decision nodes in trees selected for use; 
column (3) summary of error of fit of learning data fit; 
column (4) estimated error when decision trees are used with 
independent data. E m n  for 0BS:FDD-IN and 0BS:FDD- 
OUT regression trees are ice-cover percent, e m n  for CART- 
FDD classification trees are fraction of events misclassified. 

CART - FDD CART - FDD CART FIT OF 
MODCL IN MODEL NOT IN FDD MODEL 
AVTAK 100 AVTHK 100 AVTEM850 100 
FDDMODEL 67 CUMTHK 59 CUMTHK 78 
CUMTHK 59 DAYSPEED 57 SINEDATE 65 
AVZlOOO 58 AVZlOOO 49 AVTHK 4 1 
DAYSPEED 51 AVTEM850 46 AVZlOOO 24 
AVTEM850 43 SINEDATE 39 QAD700 6 
SINEDATE 35 QAD700 18 
QAD700 17 

WEST 

0BS:FDD-IN 176 38 4.5 % 15.1% SUPERIOR WHITEFISH BAY 

OBS:FDD-OUT 176 28 6.6 % 16.9 CART - FDD CART - FDD CART FIT OF 
CART-FDD 3757 199 .008 .I06 MODEL IN MODEL NOT IN FDD MODEL 

AVTEM850 100 AVTEM850 100 CUMTHK 100 
CE- AVTHK 93 CUMTHK 88 AVTEM850 96 

0BS:FDD-IN 101 30 2.9 % 89 AVTHK 88 SINEDATE 70 

0BS:FDD-OUT 101 28 4.5 % 15.1s ;EZEEL 78 SINEDATE 74 AwHK 53 

CART-FDD 3757 190 .004 20'9' SINEDATE 77 QAD700 42 AVZlOOO 30 
'097 QAD700 52 AVZlOOO 32 

AVZ1000 38 DAYSPEED 25 
DAYSPEED 29 



ERIE WEST 

CART - FDD CART - FDD CART FIT OF 
MODEL IN MODEL NOT IN FDD MODEL 
SINEDATE 100 SINEDATE 100 CUMTHK 100 
FDDMODEL 97 CUMTHK 83 AVTEM850 93 
CUMTHK 84 AVTEM850 56 AVTHK 9 0 
AVTHK 61 AVZlOOO 53 SINEDATE 83 
AVZ1000 50 AVTHK 49 AVZlOOO 31 
QAD7OO 49 DAYSPEED 34 QAD700 10 
AVTEM85O 41 QAD700 28 
DAYSPEED 33 

ERIE EAST 

CART - FDD CAST - FDD CART FIT OF 
MODEL IN MODEL NOT IN FDD MODEL 
FDDMODEL 100 AVTHK 100 CUMTHK 100 
AVTHK 84 CUMTHK 88 AVTEM850 74 
CUMTHK 80 SINEDATE 83 SINEDATE 67 
SINEDATE 56 AVTEM850 75 AVTHK 54  
AVTEM850 56 AVZlOOO 42 AVZlOOO 37 
AVZlOOO 40 DAYSPEED 21 QAD700 10 
DAYSPEED 29 QAD700 21 
QAD700 ?- 27 

ERIE CENTER 

CART - FDD CART - FD3 CART FITOF 
MODEL IN MODEL NOT IN FDD MODEL 
FDDMODEL 100 SINEDATE 100 CUMTHK 100 
CUMTHK 97 AVTHK 93 AVTEM850 73 
SINEDATE 94 AVTEM850 90 SINEDATE 60 
AVTHK 87 AVZlOOO 58 AVTHK 5 2 
AVTEM85O 69 QAD700 27 AVZlOOO 42 
AVZlOOO 43 QAD700 14 
QAD700 38 
DAYSPEED 35 

For January 11 - February 2,1976: observations and 
model values of spatially-averaged ice-cover for Erie-East 
basin and Erie-Center basin Numbers in columns as follows: 
(1) date - year, month, day; (2) observed ice-cover (%), 9999 
= no observation; (3) 0BS:FDD-IN model ice-cover (%); (4) 
0BS:FDD-OUT model ice-cover (%); (5) CART-SR model 
ice-cover. (6) 3-day smoothed CART-SR model ice-cover 
(%); (7) original FDD model ice-cover (%); (8) original FDD 
model ice-cover category (1-6); (9) CART fit of FDD ice- 
cover category (1-6). 



2 RMS mrs and average absolute value of e m r s  for 
each basin. Columns: e m r s  for the fits of observed i c e a v e r  
data for predictions by: (1) 0BS:FDDOUT model; (2) 
0BS:FDD-IN model; (3) CART-SR model; (4) nmning 3-day 
average of CART-SR model; (5) the origial FDD model; (6) 
CART-FDD fit of the FDD categorical data 

SUPERIOR 10.8 10.8 11.9 16.6 24.41 0.26 
WEST 

SUPERIOR 3.7 8.6 7.9 11.4 15.1 0.05 
EAST 

SUPERIOR 14.8 7.7 8.3 11.5 17.2 0.23 
WHITEFISH 
BAY 

ERIE 11.9 9.7 9.7 11.6 20.0 0.37 
WEST 

ERIE 7.8 10.8 8.8 12.2 23.3 0.41 
CENTER 

E R E  9.8 12.4 10.0 12.7 18.3 0.37 
EAST 

Value of 

SUPERIOR 2.0 2.8 2.7 6.1 12.5 0.05 
EAST 

SUPERIOR 6.9 6.7 7.6 9.5 21.3 0.03 
WEST 

SUPERIOR 7.8 3.3 3.6 6.3 10.8 0.03 
WHITEFISH 
BAY 

ERIE 6.4 7.8 6.5 8.5 14.2 0.06 
EAST 

ERIE 6.8 5.5 5.5 7.8 14.9 0.07 
WEST 

ERIE 4.6 4.9 4.2 7.7 17.7 0.06 
CENTER 


